1) Copy and complete the table.

There are \qquad sixths
 altogether.
sixths $=$ \qquad whole and sixths

1) Copy and complete the table.

There are \qquad sixths altogether.
sixths $=$ \qquad whole and \qquad sixths

There are \qquad quarters altogether. quarters
\qquad whole ones and ___ quarters

2) Copy and complete the sentences to match the image.

There are \square fifths altogether.
\square fifths = \square wholes and \square fifths
3) Complete the calculations. You can draw part-whole models to help you.

1) Which one is the odd one out? Prove it!
$\begin{array}{llll}\frac{21}{7} & \frac{12}{4} & \frac{10}{3} & \frac{18}{6}\end{array}$

2) The children have solved a problem. Read their answers. Explain who is incorrect and why.

There are 4 children at a party. Each whole sandwich is cut into 4 parts. The children eat 42 parts altogether. How many whole sandwiches did they eat?

3) Read the statement. Do you agree or disagree? Explain your reasoning.

1) Which one is the odd one out? Prove it! $\begin{array}{llll}\frac{21}{7} & \frac{12}{4} & \frac{10}{3} & \frac{18}{6}\end{array}$
2) The children have solved a problem. Read their answers. Explain who is incorrect and why.

There are 4 children at a party. Each whole sandwich is cut into 4 parts. The children eat 42 parts altogether. How many whole sandwiches did they eat?

3) Read the statement. Do you agree or disagree? Explain your reasoning.

1) The children ate some pizza. Each pizza was cut into 6 slices.

a) Who ate exactly 2 whole pizzas?
b) What fraction of pizza did Jon eat?
c) Who ate less than a whole pizza?
d) Who ate $\frac{6}{6}$ slices of pizza?
e) Who ate half a pizza? Prove it!
2) a) Use the digit cards to make improper fractions (where the numerator is larger than the denominator) that equal 4 whole ones. Your denominator can only be a single-digit number. Each digit card may only be used once per solution. Find all 9 possibilities. One has been done for you.

b) What do you notice about the numerator and the denominator in each fraction that you found?
3) The children ate some pizza. Each pizza was cut into 6 slices.

a) Who ate exactly 2 whole pizzas?
b) What fraction of pizza did Jon eat?
c) Who ate less than a whole pizza?
d) Who ate $\frac{6}{6}$ slices of pizza?
e) Who ate half a pizza? Prove it!
4) a) Use the digit cards to make improper fractions (where the numerator is larger than the denominator) that equal 4 whole ones. Your denominator can only be a single-digit number. Each digit card may only be used once per solution. Find all 9 possibilities. One has been done for you.

b) What do you notice about the numerator and the denominator in each fraction that you found?
